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Image reconstruction from finite numbers of projections 

P R Smith?, T M Peterst and R H T Bates$ 
University of Canterbury, Christchurch, New Zealand 

MS received 18 July 1972 

Abstract. Several results are obtained appertaining to the reconstruction of a two-dimen- 
sional image from a finite number of projections. Several schemes are considered for inter- 
polating between the given data. When a trigonometrical Fourier series is used for angular 
interpolation then one finds, firstly, a consistency condition whereby a posteriori estimates 
can be made of the errors in the given data and, secondly, a basic image which contains only 
that information common to all physically permissible interpolation schemes. This basic 
image is necessarily free of misleading artefacts but it  is computationally slow. Several 
computationally rapid interpolation schemes (based on the fast Fourier transform algorithm) 
are found to give good quality images, provided the given number of projections is sufficient 
to resolve the major details of the true image. Computational examples are presented for 
ideal data and for x ray projections of a bovine shin bone. The significance of the results for 
general scientific work and for clinical radiography is indicated. It is pointed out that it is 
dangerous to make a priori assumptions concerning the topological structure of the image, 
and a computational example is presented showing that a contrived image can be accurately 
reconstructed from a single projection. 

1. Introduction 

In many sciences there is currently interest in reconstructing images from projections. 
Molecular biological structure is deduced from electron micrographs (cf DeRosier and 
Klug 1968, Crowther et a1 1.970b, Vainshtein 1971, Klug and Crowther 1972). In radio 
astronomy, brightness temperature maps of the celestial sphere are produced from 
interferograms (cf Bracewell 1961, Swenson and Mathur 1968, Bates and Napier 1972). 
In medical tomography, the interiors of bodies are imaged from radiographic pro- 
jections (cf Stanton 1969, Bates and Peters 1971). In engineering, x rays are used for 
nondestructive testing of fabricated parts (cf Schneeman 1968). 

The images can be formed either by direct manipulation of the projections (cf 
Bracewell and Riddle 1967, Gordon et al 1970, Crowther et a1 1970a, Ramachandran 
and Lakshminarayanan 1971, Gilbert 1972a) or by making intermediate use of Fourier 
transforms (Bracewell 1956, DeRosier and Klug 1968, Crowther et al 1970a). We are 
concerned with the latter, when only a finite number of projections is available, so 
that interpolation between the given data is required. We note that the basic theory 
(based on the Whittaker-Nyquist-Shannon-Woodward sampling theorem) of inter- 
polating between projections has been given by Crowther et a1 (1970a). We repeat none 
of their work here. 
t Department of Physics. Present address: Biozentrum der Universitat Basel, CH-4056 Basel, Switzerland. 
$ Department of Electrical Engineering. 

361 



362 P R Smith, T M Peters and R H T Bates 

By extending an analysis due to Cormack (1963, 1964) we derive a consistency 
condition which permits a posteriori assessment of the errors in given data. We show 
that there exists a basic image which contains only that information common to all 
physically permissible interpolations of a particular set of given data. 

Considerable computer time is required for rigorously established methods of 
reconstructing images, such as the method of Crowther et al(1970a) and our method of 
reconstructing the basic image. We examine a number of straightforward methods of 
interpolating between given projections. We find that, provided we do not attempt to 
reconstruct detail finer than that allowed by the given number of projections, there are 
only minor differences between the images reconstructed using severai different 
interpolation schemes. We conclude from this that the simplest of the schemes will 
usually provide a satisfactory image. This is discussed further in $$ 8 and 9. 

In $ 2 we give the necessary background. The restrictions imposed by a finite number 
of given projections are set down in $ 3. Several interpolation schemes are introduced 
in Q 4. The consistency condition is developed in 9 5. The theory of the basic image 
is given in Q 6. 

There has been controversy over what is meant by resolution in reconstructed images 
(Crowther and Klug 1971, Bellman et a1 1971). With Klug and Crowther (1972) we 
feel that considerable difficulty is caused by resolution being (unavoidably) a somewhat 
loose concept. In $ 7 we use the basic image to define the detail which can be unam- 
biguously reconstructed from a given number of projections. We also give quantitative 
estimates of the ‘clutter’ (a descriptive term borrowed from radar, cf Skolnik (1962)) 
introduced into the image by simple interpolation schemes when the number of pro- 
jections is finite. We also show that one must be careful not to make unnecessary 
a priori assumptions concerning the information structure of the image. To emphasize 
this we show that, by extension of the recently introduced method ART(Gord0n et a1 1970, 
Herman and Rowland 1971) certain images can be reconstructed perfectly, in principle, 
from a single projection. 

In $ 8 we present a number of computational examples to demonstrate the various 
points made here. We use both ideal data and measured x ray projections of a bovine 
shin bone obtained from standard clinical radiographic apparatus. In $ 9  we discuss 
the significance of our results and outline several computational considerations. We 
emphasize the value of the fast Fourier transform algorithm (cf Bergland 1969). 

2. Radiation transforms 

We state here those Fourief transform relations (previously given the descriptive name 
radiation transforms (Bates and Peters 1971)) which connect a density distribution with 
its projections (or ‘shadowgrams’ as they are sometimes called). The theory is known 
(cf Bracewell 1956, Bates and Peters 1971) so that no derivations are included. It must 
be remembered that in any particular situation the actual ‘density’ to which the theory 
refers depends upon the type of radiation used and the type of body being irradiated. 

We denote the two-dimensional density by o(x, y )  in Cartesian coordinates and A(r, 0) 
in polar coordinates (figure 1). We denote by p the mass associated with the density : 

5 !-mm w(x, y) d t  dq = fx A(r, f3)r df3 dr P = JS_;mdx,Y)dxdY = 
0 0  

(2.1) 

where the infinite limits in the first two double integrals imply that p is the total mass. 
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( 0 )  ( b )  

Figure 1. Coordinate systems. (a) Real plane. Coordinates of arbitrary point P: (x, y) 
Cartesian, ( r ,  0) polar. The coordinates (5,  q) are Cartesian inclined at an angle to (x, y ) .  The 
density is assumed zero for r > a. (b) Fourier transform plane. Coordinates of arbitrary 
point Q : (U, 8) Cartesian, (p ,  4) polar. 

The finite radial limit in the third integral indicates that we normalize the sizes of the 
bodies we study by requiring that all their densities are contained within circumscribing 
circles of radius a (figure 1). 

The radiation passes through a particular cross section ofthe body in parallel, straight 
lines. The variation of density throughout this cross section is o(x, y). The intensity 
of each ray of the radiation, having passed through the cross section, is attenuated by a 
factor dependent upon the integrated density along the ray. It is from sets of measured 
values of this attenuation that an image of the cross section is reconstructed. It is perhaps 
worth noting that, whereas images formed by wave fields are usually in planes per- 
pendicular to radiation beams, in this case the image is parallel to the radiation beam. 

For a particular value of 4, we call the integrated density, along lines perpendicular 
to the l axis, a projection and we denote it byf((, 4). We call the set of all projections, 
for 0 < 4 < n, the projected density. So, in terms of the density, f ( t , 4 )  is given by 

An actual physical measurement seldom provides a projection directly. However, the 
reduction of measured data to projections has been described (cf Vogt et al1969). Note, 
from equation (2.1), that 

We denote the two-dimensional Fourier transform of the density by n(a, j) in 
Cartesian coordinates and A(p, 4 )  in polar coordinates (figure l), where 

= 1; J:' A(r, 0) exp(i2npr cos(4 - 0)}r  d0 dr 
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We call the integral of all rays passing through the point P of figure 1 the layergram 
(a more appropriate term, we feel, than back projection as Gilbert (1972a) has called it) 
which we denote by g(r ,  e), where 

( 2 . 5 )  

Note that, for any particular 5, the interval 0 < Cp d TC spans all different f(4,Cp). Also 
note that even though f(& 4 )  = 0 for 151 > a, g(r ,  4) has value for all finite r ,  because 
however large r is there is always a range of values of Cp such that / r  cos(8 - Cp)I < a. 

We use F(,,,(. 1 to denote an n-dimensional Fourier transform from the real plane 
to the transform plane (figure 1). We use .F(n,’( . 1 to denote an inverse n-dimensional 
transform. For one-dimensional transforms it is necessary to indicate the variable with 
respect to which the transform is taken (ie which variable becomes the variable of 
integration in the Fourier integral). This is done for a variable 5 by writing F,l);( . 1 .  

There are two basic radiation transform formulae. The first is 

4)  = ,?l)<{f(53 4 ) )  (2.6) 

which means that if all projections are one-dimensionally transformed, the complete 
Fourier transform of the density is obtained. The second formula is 

(2.7) 

which we (Bates and Peters 1971) have noted as being an appropriate basis for optical 
reconstructions of the density. The density itself is given by the two formulae : 

( 2 3 )  

(1.9) 

A(P3 4 )  = P q 2 , , M 3  8 ) )  

w(x ,  y) = 2(r. 8) = F;;{.F,l)c{f(5. 4 ) ) )  
w(x.4’) = ;.(r. 6) = . 3 ; ; { ~ F ( ~ ) { g ( r ,  

I t  is worth noting that 

which implies that the convolution (denoted by * )  theorem gives 

1 .  
r 

g ( r ,  H )  = - * /&(r,  6 )  (2.1 1) 

as an alternative form of (2.9). Some ‘direct’ methods (Bracewell and Riddle 1967. 
Ramachandran and Lakshminarayanan 1971) of inferring the density from projections 
are based on (2.1 1). However, computations based on (2.9) are necessarily much faster 
when it is required to compute the density at  a large number of points, because (2.1 1) 
cannot take advantage of the fast Fourier transform algorithm (Bergland 1969). We 
introduce here the term rho-filtered layergram for the right hand side of (2.9), because the 
factor p can be realized readily in an optical filter (cf Goodman 1968). This has suggested 
to us a possible application in clinical radiography. Presently available transverse 
tomographic apparatus gives an image which is a distorted form of layergram (cf 
Stanton 1969, Kishi et al 1969, Kotoulas and Sinis 1970). Now, layergrams are heavily 
blurred representations of actual densities (Bates and Peters 1971, Gilbert 1972a). 
Consequently, we have proposed that suitably modified tomographic apparatus could 
produce undistorted layergrams, from which accurate densities could be obtained after 
rho filtering in a standard optical bench (Bates and Peters 1971). 
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3. Consequences of finite number of projections 

We are concerned with reconstructing the density from a finite number N of projections. 
So, we are givenf((, 4) for a finite set { 4n\ 1 < n < N} of values of 4. Often we only get 
f(t,  4,) at discrete values o f t ,  but since there is rarely any technical problem in sampling 
extremely closely in (, we assume that f(t, 4") is given effectively continuously in t. 

Our restricted knowledge of the projected density means that all we can compute 
from (2.5) is the discr9te layergram 

We introduce the star function 

where 6( ) denotes the Dirac delta function. Note that 

star& 4 i - i ~ )  = q2){starN(r, e)}. 

AN(P? 4) = 4) starN(p, (6). (3.4) 

(3.3) 

All that we can compute from (2.6) of the Fourier transform of the density is 

I t  is convenient to introduce a modified projected density F ( ( , $ )  defined by 

which implies that F ( t ,  4) exists in 0 6 5 6 a, 0 Q 4 < 271 whereas f ( t ,4)  exists in 
- a  d 5 6 a, 0 Q 4 < n. If we denote by fN(t, 4) and FN(( ,  4) the parts'we know of the 
projected densities then 

We can attempt to estimate f(t,c$) and F ( 4 ,  4) for values of 4 not belonging to 
{4,,} by interpolating between the given data. We use f,(t;, 4) and F N ( t ,  4) to denote 
such estimates obtained from any of the interpolation schemes listed in the next section, 
when N projections are originally provided. We use L,(r, e), gN(r, e) and x,(p,  4) to 
denote the density, the layergram and the Fourier transform of the density computed 
from any of the interpolation schemes. 

We need two operations, spread, and linN, to describe certain of the interpolation 
schemes introduced in the next section. For a function H(r, e)  defined only on the arms 
of starN(r, e) : 
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4. Interpolation schemes 

The following interpolation schemes are arranged in order of increasing computational 
complexity. 

4.1. Discrete layergram 

e)  e gdr?  0) (4.1) 

which is the crudest available estimate of the density. It has the advantage of being 
computable direct from the given projections, without interpolation. It is of interest 
since it represents the idealized output of conventional medical x ray tomographs 
(cf Bates and Peters 1971). 

4.2. Rho-filtered discrete layergram 

AN(r, 6) = 9;; {PA&', 4)}  (4.2) 

which is the estimate of the density provided by (2.9) when no explicit interpolation is 
used. This is equivalent to Gilbert's (1972a) 'corrected back projection'. 

4.3. Spread interpolation 

ZN(r, e) = 9;"(2;{spreadN{A,(p, 4+$c)j) (4.3) 

which is the simplest interpolation scheme that can be applied in the Fourier transform 
plane. 

4.4. Linear interpolation 

&(r,e) = .~~:{linN{I\N(p,4+ff7T))i  (4.4) 

which is another simple interpolation scheme applied in the Fourier transform plane. 

4.5. Fourier series interpolation (FSI) 

The given F,(t, 4) is interpolated by 
N 'V - 1 

FJt, 4) = 1 A m ( t )  cos(m4) + B m ( O  sin(m4) 
m = O  m = l  

(4.5) 

where the A J t )  and B,(<), which are computed in standard fashion (cf Hildebrand 
1956), are such that 

Within 0 < 5 < a, by definition the interval containing all the projected density, we 
define 

'Zm*p cos((2p + I )  arc sin(t/a)) 
L 

(4.7) 

sin{2p arc sin((/a)} (4.8) 

- - 
p = o  P Z m , p  

a 2 m  + 1 . p  = e  A 2 m +  1(t) 
B 2 m +  l(t) p =  1 P Z m +  i,p 

L 

where the integer L is large enough to include all computationally significant u , , ~  and 
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which are computed in standard fashion (cf Hildebrand 1956) from the known 
A,(() and Bn(t), since the sets {cos((2p+1) arc sin((/a)}lO < p < CO} and (sin(2p arc 
sin(t/a)}ll < p < CO} are orthogonal in 0 < 5 < a. We note here that it is advantageous 
to sample the projected density a t  equal increments in arc sin ((/a) in order to simplify 
the computation of the am,p and &,p .  We now define 

N I  = iN ,  N even 

= %N - l), N odd (4.9) 
N2 = %N-2), N even 

= %N-l), N odd (4.10) 

A!,') = 0, n = N2,  N odd 

= 1, n # N2, N odd 

= 1, N even (4.1 1) 

Ai2) = 0, n = O  
= 1, 1 < P I <  N,-1 

= 0, n = N,,  N even 

= 1, n =  N,,  N odd. (4.12) 

From (3.6) and (4.6) the interpolated projected density fN((, 4) can be written as 

5 2 0  f N ( 5 ,  4)  = ' N ( < ,  4 1 3  

= F k - 5 , 4 + 4 ,  5 < 0  (4.13) 

which we substitute for f((, 4) in (2.6), obtaining with the use of (4.5) the estimate 
N i  

x N ( P ,  4) = 2 c cos(2m4) 1: ~ 2 m ( t )  cos(2npt)dt 
m = O  

N 2  

+i2 C A:) sin{(2m+ 1)4) 7 B,,, sin(2rrpg) d( (4.14) 
m=O J O  

for the Fourier transform of the density. Substituting (4.7) and (4.8) into (4.14), and using 
the Fourier inverses of formulae 11.4.35 and 11.4.36 of Abramowitz and Stegun (1965), 
gives 

(4.15) 
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where Jm( . ) denotes the Bessel function of the first kind of order m. The estimated 
density &(r, e) is the inverse Fourier transform of 4). This is conveniently 
evaluated by first expressing the kernel of the Fourier integral as a trigonometrical 
Fourier series (cf formulae 9.1.44 and 9.1.45 of Abramowitz and Stegun (1965)). I t  
then follows (formulae 11.4.33 and 11.4.34 of Ambramowitz and Stegun (1965)) that 

(4.16) 

(m + p)!xZm 
(2m)!r(p-m+ 1) 

- - 2F,(m+p+1,m-p;2m+1;x2) ,  x < l  

(m + p) !x - 2 ( p +  
- - ,F,(m + p +  1. p-m + 1 ; 2p+ 2 ; x-'), x > 1 (4.17) 

(2p + 1) ! r ( m  - p) 

where r( . ) and 2F1( . ) denote the gamma and hypergeometric functions respectively. 
The limits on the inner summations in (4.16) are represented by special symbols in 
order to clarify the exposition of # 5 and 6. They have the values 

M; = o ,  M: = N I ,  M ;  = 0, Ml = N , .  (4.18) 

This interpolation scheme is much more complicated than the previous ones. 
It also requires more computation time. However, it is of considerable theoretical 
interest, as is shown in 04 5 and 6. This is why it has been described in detail here. The 
previous analysis by Cormack (1963, 1964) does not cover the points which we must 
accentuate. 

5. Consistency condition 

The hypergeometric functions in (4.17) are well behaved for all m and p. However, the 
gamma functions are infinite when their arguments are nonpositive integers. Con- 
sequently, 

Hm,p(x) = 0, m 2 p c l ,  x < o  

= 0, P 3 m, x > o  (5.1) 
which means that the limits on the inner summations in (4.16) can take the forms listed 
in table 1. 

The density is normalized (figure 1 and equation (2.1)) such that the projected density 
lies entirely within 151 < a. Therefore, to be consistent, &(r, 0) should be zero for r > a. 
We introduce the terminology : 

pm,plm < 2p, 0 < p < L }  - set of signijicant coefficients 

pm,plm 2 2p + 1,0 < p < L} - set of redundant coefficients. 
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Table 1. Summation limits appearing in equation (4.16) 

r < a  r > a  

Table 1 and equation (4.16) show that &(r, 6 )  is not consistent if any of the redundant 
coefficients have appreciable magnitude. So, we introduce the consistency condition : 

a m , p  = B m , p  = 0 9  V m , p E m  2p+l ,  O < p < L .  (5.2) 
Measured data are always imperfect so that the consistency condition is bound to 

be violated in practice. Denote by oR and os respectively the standard deviations of the 
redundant coefficients and the errors in the significant coefficients, due to random 
errors of standard deviation o in the given data. The theory of normal matrices for the 
evaluation of coefficients, as used for instance by Crowther et al(1970a), shows that 

40 
OR N os N - 

7 r 2 ’  
(5.3) 

However large N is the fact that it is finite prevents the reconstruction of some detail 
in the image. We use the accepted term angular aliasing to denote the cause of this type 
of image distortion. 

Results of a number of Computations have suggested to us that angular aliasing 
does not significantly affect the magnitudes of the redundant coeffieients, unless N is 
small (about 5 or less). Consequently, our present opinion is that 7t2a$4 is a meaningful 
a posteriori measure of the error level in the given projections. 

Judicious truncation of the series in (4.16) can sometimes improve the signal to 
noise ratio of the reconstructed image. This is analogous to the standard procedure of 
enhancing noisy images by low-pass filtering (Rosenfeld 1969). The point is that even 
if the random errors in the given projections are uniformly (statistically) distributed 
over the real plane (see figure l), in the Fourier transform plane the magnitude of the 
errors tends to increase radially. This is emphasized by the factor p multiplying A&, 4) 
in (4.2) and by the factors (proportional to p )  multiplying the coefficients a,,p and 
Bm,p in (4.16). 

In our current work we find that even when there actually is density for r > a, 
and the image is reconstructed from projections restricted to 5 < a, then the image 
obtained from the significant coefficients of the FSI scheme is much less distorted than 
that obtained from the spread and linear interpolation schemes. 

6. Basic image 

If F ( < , 4 )  has no angular, trigonometrical Fourier components of order higher than N 
then the right hand side of (4.5) is an exact representation of F ( 5 , 4 ) .  In general, F ( 5 , 4 )  
has higher order Fourier components so that the A,(t)  and I?,(<) introduced in (4.16) 
will be subject to aliasing errors (cf Cooley et a1 1967). Consequently, we can usefully 
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investigate interpolations F k ( < , + )  of FN(& 4), where 

and, because of the foregoing discussion, 

where the 2,(5) and B,(<) are arbitrary, apart from the very weak constraint (6.2); and I 
can be any positive integer. However, the condition 

I = N-1 (6.5) 

permits all the Fourier components of FN(t, 4 )  to be independent (U priori) of those of 
FN(<, 4). This condition also simplifies the analysis, so that it is used in the following 
discussion, which is restricted to cases for which the given projections are equally spaced 
in angle : 

njrl 

4 n  = 

It is convenient to take 

SN($) = 2 sin(N4). (6.7) 

We write 
2N- 1 

" 4) = i A L ( 0  cos(m4) + X(<) sin(mrb)i (6.8) 
m = O  

where (4.5) and (6.1) through (6.7) show that 

Ab(0 = AO(0, Bb(t) = Bo(<) = 0, (6.9) 

= A m ( t )  + B N  - m ( t ) ,  ~ k ( t )  = B m ( O  + A N  - m ( O ,  1 < VI  < N-1. (6.10) 

AX(5) = A N ( 0 3  BX(0 = BN(0  = 0, (6.1 1) 

= - B m - N ( < ) ,  X(t) = a m  - N ( O ,  N + l  < m < 2N-1. (6.12) 

We now introduce { u ~ , , , ~ ~ , , ~ O  < m 6 2 N +  1,0 < p < L }  the members of which are 
connected with the members of (A;(<) ,  B;({)/0 < m < 2N - 1) through (4.7) and (4.8) 
with the symbols A,  B, a and p replaced by A', B', a' and p'. Combining (6.10) and (6.12) 
leads to 

@ ; v - q , p  - - " - q , p - 4 f + q , p >  1 < 4 < N-1. (6.13) 

The must satisfy the same consistency condition as the u , , ~ ,  so that 

' - - 0 ,  m 2 2 p + 1  (6.14) 

from (5.2). Combining (6.13) and (6;14) gives 

uL,p = a m , p ,  0 < m < 2N-2p-1 (6.15) 
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which remains true if a is replaced by p. Consequently, we introduce the terminology: 

(a,,pr/?m,plm < min(2p,2N-2p-l, N),O < p < N-1) - set of unambiguous coefficients. 

As shown by (6.15), the unambiguous coefficients derived from the FSI scheme (44.5) 
are unchanged as a((, 4 )  is varied. This result still holds for I > N - 1, but the analysis 
is not given here because it is more complicated and because the result is relatively 
uninteresting, since we cannot estimate F((, 4)  to higher order than the right hand side 
of (4.5) when we are only given N projections. 

If only the unambiguous coefficients are used to reconstruct the density, so that the 
summation limits in (4.16) are 

M ;  = 0, MT = min(p, N-p- l,$N), M ;  = 0, M z  = min(p- 1, N-p- 1, i N -  l), (6.16) 

then we say we have a basic image which is free ofany artefacts which might be introduced 
by a particular interpolation scheme, such as any of the ones described in 9 4.1 through 

Various computations have confirmed that the unambiguous coefficients, for a 
particular value of N, do not change when more projections are given. The ambiguous 
members of the set of significant coefficients do change markedly. However, as was 
mentioned in Q 5 ,  the standard deviation of the redundant coefficients computed for a 
particular number of projections changes very little as the number of given projections 
increases. 

4 4.4. 

7. Resolution and uncertainty 

Given some number N of measured projections one wishes to know what fineness of 
detail can be attained in the reconstructed image. This is the problem of resolution in 
which one asks how close two independent features of the image can be before they 
become indistinguishably merged. It is difficult to find unambiguous answers because 
the attainable resolution is appreciably affected by the detailed shapes not only of the 
two features but also of the neighbouring parts of the image. 

The density is zero for 1x1 > a and IyI > a so that, from the sampling theorem, 
o(x, y) is uniquely defined by R(m/a, n/a) where m and n are integers in the range( - CO, CO). 
The given data can only be related directly to the values which n(a ,  p) assumes on straight 
lines passing through the origin of the Fourier transform plane. So, we cannot compute 
n(m/a, n/a), for all m and n, from the given data unless, as Crowther et al(1970a) do, 
we take n(a ,  f l )  = A(p, 4)  to be negligible for p greater than some finite value. This means 
effectively that n(a ,  1) need only be known at a finite number of sample points. Therefore, 
the required values of Q(a, /I) can be estimated by inverting matrices of finite order. 

Since details of the image are unknown before reconstruction, we can only guess 
the value of p beyond which n(a ,  p) is negligible. So, we can only guess the number of 
sample points needed to reconstruct the image satisfactorily. Because of this we feel 
that, when the given projections are equally spaced, direct interpolation of the given 
data is as justifiable a way of calculating the samples needed for the fast Fourier trans- 
form algorithm as the methods of Crowther et al(1970a). 
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If we use the FSI scheme (6 4.5) and reconstruct only the basic image then we know 
that the computational procedure cannot have introduced misleading artefacts ; the 
standard deviation cR of the redundant coefficients indicates the error level due to 
imperfections in the given data. 

An interesting facet of the basic image is that its resolution is not uniform in the 
sense of Klug and Crowther (1972). If L in (4.16) is restricted to be less than $N then 
&(r, 8) is an image with uniform resolution, but it contains only half the unambiguous 
information contained in the given projections. 

Consequently, we feel that, instead of attempting to apply conventional resolution 
criteria, it is more useful to reconstruct the image from the unambiguous coefficients 
if one desires to make sure that no artefacts are introduced by the computational 
procedure. Of course, it must be remembered that our basic image has been derived 
only for equally spaced projections. We have not found any analysis, similar to that 
presented in $6,  applicable to unequally spaced projections. 

The foregoing reasoning applies only to images about which one has no preknowledge 
apart from the radii of their circumscribing circles. If one knows a priori that the image 
has some special topology then one can sometimes overcome the limits set by the basic 
image. For instance, if the image is contained in a rectangle of known size and the 
rectangle is divided into a known rectangular grid, with the intensity of the image 
being unknown but constant in each cell of the grid, then the image can be reconstructed 
from a single projection, as is demonstrated in appendix 1. It is obvious that for all but 
very specialized (or contrived) classes of image, a single projection gives no information 
concerning the detailed structure of the image. So, this example of the rectangular 
image shows that one must be careful not to force unwarranted uniqueness on a re- 
construction method by making computationally convenient assumptions concerning 
the topological structure of the image. Gilbert’s (1972b) discussion of the ART technique 
(Gordon et al 1970, Herman and Rowland 1971) reinforces this point. 

Another question which can be discussed quantitatively is how much uncertainty 
(or what error level) is introduced into the image by only N projections being given. 
The rho-filtered discrete layergram (9 4.2), which is the accurate image in the limit of 
an infinite number of projections, is also translationally invariant with respect to the 
given data so that the reconstruction of a particular feature can be considered indepen- 
dently of the rest of the image. 

We take a smooth ‘blob’ of density centred at  the point ( ro ,O0)  of the r ,8  plane 
(figure l(a)). We find it convenient to give the blob a ‘gaussian’ shape: 

exp[ - { rz + rg - 2rr, cos(8 - eO)}pw2] ,  

where w is the effective width of the blob. We then calculate the N projections of this 
density when 4” and S N ( 4 )  are given by (6.6) and (6.7) respectively. In appendix 2 it is 
shown that the rho-filtered discrete layergram computed from these projections can be 
expressed as the sum of the original blob plus ‘clutter’ spread over the r, 8 plane. 

The clutter is a function of w ,  N and the distance from (ro, do). Since the relative 
positions of features of an image are unknown a priori, the clutter must be looked upon 
as noise on the true image. The image degradation is greatest where the noise level is 
largest. Accordingly, in figure 2 we present a plot of the maximum magnitude of the 
clutter associated with the gaussian blob (itself having a maximum magnitude of unity) 
as a function of r/w and N .  Thus, figure 2 permits one to estimate the noise level present 
in an image due to a feature of a particular size and intensity when N projections are 
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1 

N 

Figure 2. Maximum magnitude of clutter associated with gaussian blob as a function of 
i-/w and N .  

given. At points in the image, the clutter associated with a number of features may add 
constructively and give a misleading artefact. An important aspect of the basic image 
is that it is a smooth approximation to the true image. 

An interesting point is that if the number of projections satisfies the resolution 
criterion advanced by Crowther et al (1970a) then the clutter exhibited by the rho- 
filtered layergram is of similar level to that exhibited by the other interpolation schemes 
(for the gaussian blob, the clutter level lies to the left of the dashed line in figure 2). 

8. Computational results 

We now present some computational examples to reinforce points made in previous 
sections. 

We first use ideal data (the ‘given’ projections are computed, not measured). We 
consider circular cylinders offset from the centre of the real plane. The abrupt changes 
of density at the edges of the cylinders represent crucial tests for the computational 
procedures. We also present images reconstructed from measured projections of a 
bovine shin bone (tibia and fibula). In all of these examples the images are reconstructed 
from 20 equally spaced projections and are computed on a square 128 by 128 point 
grid. 

We first illustrate the ‘smoothness’of the basic image. Figure 3 shows the ideal image 
of a solid cylinder, its basic image and its image obtained from the FSI interpolation 
scheme. The FSI image is sharper than the basic image but it exhibits much sharply 
peaked clutter. 
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Figure 3. Images of off-centred circular disc. In these perspective images the apparent 
height is proportional to density. (a)  Ideal image, (b) basic image and (c) FSI image. 

We now compare the interpolation schemes introduced in $4. Figure 4 shows 
contour plots of images of a hollow cylinder. The reconstructed images for the FSI, 
linear and spread interpolation schemes exhibit few significant differences and their 
clutter levels are similar. The rho-filtered discrete layergram (figure 4(e)) has more clearly 
defined edges but its clutter level is twice as large as that of the three previous images. 
The discrete layergram (figure 4(f)) is a heavily blurred image; the cylinder edges are 
not defined and it is not obvious that the density is less at  the centre of the cylinder. 
Since the images shown in figures 4(c) and 4(d) require significantly less computer time 
than the image shown in figure 4(b), one can conclude that either the linear or spread 
interpolation schemes should be used when it is advantageous to conserve computer 
time. 

We obtained x ray photographs of a bovine shin bone and an aluminium step wedge 
(as a calibration control) using standard clinical radiographic apparatus. We obtained 
the required projections of a particular cross section of the bone by scanning the photo- 
graphs with a microdensitometer, which permitted us to correct for film nonlinearities. 
We cut out a thin slice of the bone containing the cross section which we examined. 
An x ray photograph of this slice is shown in figure 5 (plate). The images in figure 6 
were computed and were made by successive character overprints on the standard 
lineprinter used in the Computer Centre of the University of Canterbury. This method 
of making images has been described by MacLeod (1970). The discrete layergram 
(figure 6(a)), which is what would be obtained (ideally) from a conventional transverse 
tomograph, is seen to be very heavily blurred, and it is not clear that there is a hole in 
the middle of it. The rho-filtered discrete layergram (figure 6(b)) has a high clutter level 
but it displays all the main features offigure 5 (plate). It is clear that medical tomography 
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Figure 5. Actual bovine shin bone cross section. 

[facing page 3 74 J 
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 fig^ 4. Results of interpolation schemes on ideal data. (a) Ideal object, (b) Fourier series 
interpolation (mi), (c) linear interpolation, (d)  spread interpolation, (e) rho-filtered discrete 
layergram and (f) discrete layergram. Images are contoured in steps corresponding to 10% 
of the maximum density. 
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Figure 6. Reconstructions of bovine shin bone cross section from real data. (U) Discrete 
layergram of bone, ( h )  rho-filtered discrete layergram of bone, (c) basic image of bone and 
(6) linear, spread and FSI reconstruction of bone. 

would be improved if  rho-filtered discrete layergrams, rather than plain discrete layer- 
grams, could be displayed, as we have previously suggested (Bates and Peters 1971). 
Figure 6(c )  shows the basic image, which is less contaminated with clutter than the rho- 
filtered discrete layergram. The linear, spread and FSI interpolation schemes all lead to 
similar images. The image shown in figure 6(d) ,  which was got from the spread scheme, 
is clearly an improvement on the basic image ;and it also contains no misleading artefacts 
because the 20 given projections are sufficient for reconstructing the significant detail 
in the image. I t  must be remembered, however, that it will often not be possible to es- 
timate a priori how many projections are necessary to prevent the appearance of arte- 
facts. 

To illustrate the procedure developed in appendix 1, whereby an image with a certain 
topology can be reconstructed from a single projection, we computed a rectangular 
grid image of the bone with the density being constant in each cell of the grid. We then 
used this image to compute the pseudoprojection which would be measured if the actual 
cross section of the bone had this contrived form. The pseudoprojection is shown in 
figure 7(a) and the reconstructed image (by the method of appendix 1) in figure 7(b), 
which is very similar to figure 5 (plate). Shown in figure 7(c) is an actual measured 
projection. The image, reconstructed from it by the method of appendix 1, is shown in 
figure 7 ( d ) .  I t  bears no relation to figure 5 (plate) as is of course expected, since for cross 
sections with topologies which occur in practice there is a continuous infinity of images 
corresponding to a single projection. 
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( d )  

Figure 7. Reconstruction from a single projection. (a)  Pseudoprojection of bone, (b )  actual 
digitized cross section and reconstruction from pseudoprojection in (a), (c) actual projection 
of bone and (6) reconstruction from projection in (c). 

9. Conclusions 

In scientific work there are two main reasons for reconstructing images of objects. 
Firstly, one may wish to inspect the image to see if it contains any unsuspected feature 
(after all, this is one way discoveries happen). Secondly, one may wish to learn if certain 
known features are present in the image. 

When concerned with the first of these reasons, especially when one is not completely 
certain that the density is restricted to r < a, one should compute the basic image; 
it is free of artefacts (one will not make unwarranted discoveries!). Also, one can estimate 
the accuracy of the image a posteriori. 

The second reason is most likely to  apply in more routine situations when many 
images need to be reconstructed, so that computational economy is important. In such 
cases, especially when one is certain that the density is zero for r > a, one should use 
a simple interpolation scheme. The results presented in § 8 indicate that rho-filtered 
discrete layergrams exhibit appreciably more clutter than images got from the inter- 
polation schemes described in @4.3, 4.4 and 4.5, all three of which give comparable 
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results. The computer times required for spread interpolation ($ 4.3) and linear inter- 
polation ($4.4) are about the same (see table 2) and are both much shorter than the time 
required for the FSI scheme (0 4.5). Because linear interpolation is smoother, it should 
probably be preferred to spread interpolation. 

Table 2. Computer times for several reconstruction methodst 

Method 

Approximate time to 
reconstruct N M-point scans 
on an M x M point grid 

Time to reconstruct 20 128-point 
scans on a 128 x 128 point grid 
(min) x (min) 

Layergram 1.9 0.6M2N 
Rho-filtered layergram 2.2 (0.6M + 1.6 1ogZM)MN 

Spread/linear interpolation 0.8 {2M + 6N + (0.15M +0.8N) log,M}M 
(using FFT) 

(using FFT) 
Fourier series interpolation 2.9 
CON 

(direct convolution, 
Ramachandran and 
Lakshminarayanan 1971) 2.5 

(algebraic reconstruction 
technique, Gordon et a1 
1970) 3 4  

Conventional Fourier transform 
(computing the linear inter- 
polation scheme and using 
trapezoidal integration rule 
to evaluate Fourier integrals) 11608 

ART 

0.9M2N 

0.76M2N 

1.25M’NIf 

(43M2+2)M2 

t Excluding overheads in the form of disc transfer operations, data input/output etc. 
1 I is the number of iterations required for convergence. Its value depends on the type of 
data used (cf Gilbert 1972~). 
0 This time was obtained by extrapolating from the reconstruction time of a smaller problem. 

Klug and Crowther (1972) point out that theresolution criterion (that ifthe resolution 
distance, in an image of maximum diameter 2a, is to be d then the necessary number of 
projections is 2 7 4 4  originally advanced by Crowther et al (1970a) leads to an image 
which is both free of artefacts and uniformly resolved. They also indicate that an image, 
having twice the resolution at its centre as it has at its periphery, can be free of angular 
aliasing errors. Such an image can only be built up from a restricted number of the 
eigenfunctions considered by Klug and Crowther (1972). Their figure 3, which shows 
the restrictions on their radial and angular eigenfunctions, is reminiscent of the restric- 
tions on m and p given in 0 6 for the unambiguous coefficients. Consequently, our basic 
image is similar to Klug and Crowther’s aliasing-free image. The improvements that 
we introduce here are, first that our consistency condition permits a posteriori assessment 
of the quality of the given data, and second that we prove that our basic image contains 
only that information common to all physically permissible interpolations of the given 
projections (provided that they are equally spaced in angle). 

Finally, we discuss computational economy. We emphasize the speed of the fast 
Fourier transform (FFT) algorithm (Cooley and Tukey 1965, Bergland 1969). Comments 
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made by some authors (cf Ramachandran and Lakshminarayanan 1971 and Gilbert 
1972a) suggest that they do not realize that this algorithm is necessarily faster (even if, 
for algorithms based on ‘direct’ methods, tabulations of special functions are prestored 
in the computer memory) when handling multitudes of data, because it reduces the num- 
ber of computational operations. If N Fourier components are to be computed, the time 
required for the FFT algorithm is proportional to NlogJV, compared with N 2  for a 
conventional Fourier transform algorithm. Table 2 compares the time required for the 
schemes described in this paper and for two ‘direct’ methods. The last item in table 2 
emphasizes the importance of the FFT algorithm and explains perhaps why those who 
have not yet appreciated its niceties tend to avoid computing Fourier transforms. 
The times given in the second column of table 2 were got by running all the methods on 
the same computer (IBM 360/44 at the Computer Centre, University of Canterbury). 
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Appendix 1 

Consider a rectangular image, of dimensions A by B, divided into M,M, rectangular 
cells, where M, and My are positive integers. Figure 8 shows the geometry. The density 
is constant within each cell. 

d X ’  Y )  = ”,”, 
n < iM,-y+l < n + l ,  l < m < M , ,  1 < n < M y .  (A.l) 

m < x+iM,+ l  < m+l ,  

I I I 1  

Figure 8. Geometry of grid for constructing pseudoprojection. A, B overall dimensions of 
grid, C spacing on x axis between adjacent projection samples = A/(M,M,). D, E cell 
dimensions. 
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We project the image on to the < axis which is oriented at an angle to the x axis of 8,  
which is given in terms of the integer M ,  by 

e = tan-'(&). 

The resulting pseudoprojection is then sampled at points tk, where 

as shown in figure 8. f ( & ,  6) is then given by 

(A.4) 

1 = k(mod M y ) ,  

6, = 0, m = O  

= 1, m # O  

B sec 0 a = -. 
MY 

a is a constant of proportionality made necessary by the path of integration through 
each cell. If one is given the M,M, values off(<,, e), then each member of {CO,,,} can 
be obtained iteratively starting with 

W1,1 = af1 ('4.6) 

which can be substituted into (AS) to give This process may be continued until 
eventually all the am," are obtained. Note that the given data is equivalent to a single 
projection given at  M,M, values of 4 .  

Appendix 2 

Because rho-filtered discrete layergrams are linear in the given data, the clutter (due to 
N being finite) associated with a particular feature is a function only of the radius 
vector from an appropriately chosen origin in the feature. Consequently, when analysing 
the gaussian blob introduced in $7,  it is sufficient to centre the blob at the origin of 
coordinates of figure l(a). Thus, 

of which the projected density is 
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which gives, using (2.6) and formula 11.4.29 of Abramowitz and Stegun (1965), 

A(p, 4) = 2nw2 exp(-2n2w2p2). (A.9) 

From (3.4) and (4.2) the rho-filtered layergram is 

x exp( - 2?r2w2p2) exp{ - i2nrp cos(4 - e)>p dq5 dp (A.lO) 

when 4, is given by (6.6). Expressing the complex exponential in (A.lO) as a trigono- 
metrical Fourier series (cf formulae 9.1.44 and 9.1.45 of Abramowitz and Stegun 1965), 
integrating with respect to 4,  summing over n and writing t = 21/2nwp gives 

m 

&(r, 0)  = 4 c E,( - 1)" cos(2mNO) Som J2,,,4 q) exp( - t 2 ) t  dt (A.ll)  
m = O  

where t, is the usual Neumann factor. The term for m = 0 in (A.11) is A(r, e), as given 
by (A.7). The remaining terms can be evaluated by integrating by parts, which replaces 
tJ2mN(21'2rt/w) in the integrand by a constant multiplied to the derivative of the Bessel 
function, and then using the second recurrence relation in formula 9.1.27 of Abramowitz 
and Stegun (1965). The resulting integrals can be expressed in terms of modified Bessel 
functions using equation (5), p 394, of Watson (1966). So, the clutter introduced by 
there being only N given projections can be written as 

&(r, 6') - A(r, e) 
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